Abstract Submitted for the MAR01 Meeting of The American Physical Society Sorting Category: 8.5 (Experimental) Application of a ϕ^4 Model to the Liquid-Gas Critical Point of ³He FANG ZHONG, INSEOB HAHN, M. BARMATZ, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Dr. Pasadena, CA 91109, USA^1 — A ϕ^4 model has been applied to the liquid-gas critical point with the universal ratios of leading critical and correction amplitudes built in. We have used this model to analyze recently obtained heat capacity at constant volume, C_V and isothermal susceptibility, χ_T data near the critical point of the pure 3 He. The C_{V} , and χ_{T} measurements were performed in the same sample cell along the critical isochore over the reduced temperature range of $10^{-4} < |T/T_c - 1| < 10^{-1}$. This RG-based crossover ϕ^4 model with a minimal set of three adjustable parameters provides an excellent fit to the C_V and χ_T data both above and below the critical point. The correlation length, ξ , calculated from the ϕ^4 model with the three pre-determined parameters, agrees with previous experimental measurements over the entire crossover range. The good agreement between the ϕ^4 model calculation and the experimental measurements extends beyond the theoretically predicted crossover range. ¹This work was supported by NASA. | | Fang Zhong | |-----------------------|--| | | fang@squid.jpl.nasa.gov | | X Prefer Oral Session | Jet Propulsion Laboratory/Caltech | | Prefer Poster Session | 4800 Oak Grove Dr. Pasadena, CA 91109, USA | Date submitted: November 28, 2000 Electronic form version 1.4